Earth System Science ESCI 795/895; NR 797/897; EOS 895
Syllabus for Fall 2005

Professors:
 Dr. George Hurtt, 451 Morse Hall, 603-862-1792, george.hurtt@unh.edu
 Dr. Cameron Wake, 354 Morse Hall, 603-862-2329, cameron.wake@unh.edu
TA:
 Ms. Tracey Wawrzeniak, 346 Morse Hall, 603-862-4046, tlp5@unh.edu

Lectures: James 116 W/F 8:40 –10:00am
Lab: Tischler Computer Lab, James 20 Friday 1:10-3:00 pm
Environmental Sciences Lecture Series: Th 3:30-5:00pm, James 303

Student Learning Objectives:

1. Describe key components, interactions, and concepts that characterize the modern earth system (knowledge, comprehension)
2. Analyze the causes of change in the Earth System over varied temporal and spatial scales (analysis)
3. Build simple models of key Earth System interactions; apply this knowledge to key scientific questions in Earth System Science (application)
4. Read, discuss, and evaluate Earth System Science papers in the primary literature (synthesis, evaluation)
5. Relate knowledge of Earth System Science to the human condition (application)
6. Develop peer-to-peer learning/teaching skills and effectiveness at working in groups (skills)
7. Evaluate the role of uncertainty for Earth System Science research and decision making (evaluation)

Reading for Lecture

2. Primary Literature including articles both for background (to enhance textbook reading) and for advanced concepts have been compiled into an electronic course packet posted on the blackboard site. There will be 2-5 readings from the electronic course packet each week.

3. Additional reference text books and other books of interest are listed on the blackboard site.
Reading for Laboratory

Laboratory readings and exercises will be posted on Blackboard. Background reading (material from Harte, J. (1988) Consider a Spherical Cow. A Course in Environmental Problem Solving, and Harte, J. (2001). Consider a Cylindrical Cow: more adventures in environmental problem solving) will also be posted on the blackboard site.

NOTE: Course lectures, information, readings, and student presentations will be posted online at: http://blackboard.unh.edu

Course Prerequisites: Calculus I and permission of instructor

For undergraduate students, our goal is to attract juniors and seniors from CEPS and COLSA who have already taken a progression of courses in their field of study. Our main criteria for selecting students will be evidence of this progression in a science based major. We also expect to attract incoming M.Sc and Ph. D. students with an Earth Science background/plan-of-study.

COURSE CONTENT

NOTE: Each class will include a segment providing background information and a segment on advanced concepts (AC) of particular relevance to the Earth System. Students will be expected to have read both the background material and advanced concepts articles so that they can participate in class exercises and discussions in a meaningful way. This class participation will provide one means of student assessment. In addition to the lectures, students are required to attend five Environmental Science Seminars given by NASA scientists. These seminars will occur on Thursdays from 3:30 to 5:00 pm in James 303 on the following dates: 10/6, 10/20, 10/27, 11/3, and 11/17.

PART 1: Earth System Science (ESS) Concepts, Components, and Cycles

L1: 8/31 Course structure, class objectives, motivation for class, intro to concept mapping
L2: 9/2 Earth System Overview and Components
 Initial exercise in developing concept map temporal variability of the Earth System
 AC: Spatial and temporal scales of analysis
L3: 9/7 Earth System Concepts: Interactions and Processes
 AC: Why is ESS important for humanity?
L4: 9/9 Earth’s Energy Balance and the Greenhouse Effect
 AC: Why is the Earth’s temperature just right? and Climate Feedbacks
L5: 9/14 Solar Luminosity and the Role of the Sun in the Earth System
 AC: solar and orbital variability
L6: 9/16 Atmosphere (temperature, pressure, circulation)
 AC: Semi-permanent high and low pressure cells
L7: 9/21 Hydrosphere I: The Water Cycle, evaporation and precipitation
 AC: Human influence on the global water cycle
L8: 9/23 Hydrosphere II: Ocean Structure and circulation
AC: NADW and thresholds; non-linear feedbacks
L9: 9/28 Coupled Ocean-Atmosphere circulation systems (ENSO, NAO and Monsoons)
AC: teleconnections and climate forecasting
L10: 9/30 Cryosphere: Snow and Ice
AC: short-term temporal variability of sea ice and mountain glaciers; sea level
L11: 10/5 Lithosphere: Plate Tectonics, Paleogeography, and Volcanoes
AC: Tibetan Plateau and global cooling
L12: 10/7 Biochemistry: Carbon Cycle
AC: Approaches and uncertainty in modern carbon budgets
L13: 10/12 Biochemistry: N,P Cycles
AC: Linkages among biogeochemical cycles
L14: 10/14 Biogeochemistry: S Cycle
AC: Volcanoes, DMS, and Earth’s energy balance
L15: 10/19 Biophysics: Land Cover Influence on Climate
AC: Biophysics and climate simulations
L16: 10/21 Biosphere and Biodiversity
AC: Role and value of major ecosystem services
10/25 12:30 – 2 PM: Review for Exam
10/26 EXAM 1

PART II: ESS Interactions and Feedbacks – Case Studies

L17: 10/29 2nd exercise in developing concept map of the Earth System
AC: Rise of Atmospheric Oxygen
L18: 11/2 Snowball Earth
L19: 11/4 K-T Boundary Extinction Event
L20: 11/9 Rapid Climate Change Events over last glacial cycle
L21: 11/16 Holocene Climate Change and Civilization
L22: 11/18 Threshold response: Ozone Hole
L23: 11/23 Climate and Human Health
AC: NO CLASS: THANKSGIVING
L24: 11/30 Recent Land Use, Fossil Fuel Burning and the Carbon Cycle
L25: 12/2 Recent Biosphere Feedbacks
L26: 12/7 Scenarios of Climate Change in the Future
L27: 12/9 Review and wrap-up.
12/14 Final Exam (during final exam period)
LABORATORIES – BUILDING COMPUTER MODELS

• Models will be developed using Stella™ Software.
• Lab work will be graded and discussed each week to measure student progression.
• Labs will utilize and apply information covered lecture & reading materials.

Part I: Introduction to Modeling:

This part of the course will consist of student interviews, and an introduction to the structure and use of models as tools for scientific analyses/investigation. Topics addressed will include: order of magnitude estimation, box models, units, lifetimes, equilibria, timescales to reach equilibria, differential equations, integration, feedbacks, stability, and an introduction to Stella computer modeling software. As we expect to have students with varied backgrounds taking this course, we will pay special attention to students who require additional assistance (both via pairing students with strong numerical skills with those whose numerical skills are not as strong and focused help from the TA and the Professors).

Lab 1: 9/2 Student Interviews
Lab 2: 9/9 Earth System Science Critical Thinking 1
Lab 3: 9/16 Earth System Science Critical Thinking 2 & Introduction to Stella

Part II: Modeling Earth System Dynamics:

Lab 4: 9/23 Earth System Dynamics I: Energy Balance
Lab 5: 9/30 Earth System Dynamics II: Variable Forcing
Lab 6: 10/7 Earth System Dynamics III: Potential Biospheric Feedbacks
Lab 7: 10/14 Earth System Dynamics IV: GHG Dynamics
Lab 8: 10/21 Synthesis and Identification of Student Team Case Studies

Part III: Student Case Studies Using Computer Models

Student teams will identify and address important cases studies in Earth System Science using computer models, and present results in the form of oral, PowerPoint, and poster presentations. The major goals of this section of the lab are threefold: (1) the development and application of quantitative skills for addressing key problems in Earth System Science, (2) an increased understanding of important case studies in Earth System Science using models, and (3) the development and application of professional skills for presenting scientific information. Student teams will provide weekly presentations on progress and issues.

Lab 9:10/28 Work in Teams on defining scientific question and motivation for case study
Lab 10: 11/4 Presentations and feedback: Scientific question and motivation
Lab 11: 11/18 Presentations and feedback: Technical plan
Lab 12: 11/23 (Wednesday) Presentations and feedback: Model description
Lab 13: 12/2 Presentations and feedback: Preliminary results
Lab 14: 12/9 Final presentation of student projects and final team reports due
Student Project Topics (Examples):
40 million year cooling
Snowball Earth
Biodiversity
Rapid Climate Change Events
Quaternary Glaciations and the Carbon Cycle

GRADING

Exams (2) 20% each 40%
Weekly class exercises: 10%
Labs: 30%
Research Paper/Presentation: 20%

Weekly class exercises include short oral summaries of required readings, short in class exercises, discussions, and debates. The laboratories will be graded based on material handed in for grading as well as oral updates of research and the final oral/poster presentations.

Graduate students will be expected to produce additional material and efforts in several areas on which they will be graded accordingly. This includes leading discussions and exercises during lectures, an additional essay question on the two exams, an additional critical thinking problem in each of the first seven laboratory exercises, and providing leadership to the student teams working on the laboratory case studies.