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Abstract—In this paper, the discrete wavelet transform (DWT) is 
employed as a preprocessing stage for a multiclassifier and 
decision fusion system for feature extraction and dimensionality 
reduction of hyperspectral data. As a result, both global and local 
spectral features can be exploited.  Feature grouping is conducted 
according to wavelet decomposition levels, or scales.  Each DWT 
decomposition level’s detail coefficients are classified 
independently, creating a multiclassifer system.  The resulting 
classifications are then fused using a simple majority voting 
scheme.  The proposed target recognition system was applied to 
hyperspectral data for an agrictultural applications, namely 
detecting the presence of the often devastating disease known as 
soybean rust in soybean crops.  The proposed approach was 
compared to well-known hyperspectral dimensionality reduction 
methods, such as stepwise linear discriminant anlaysis (LDA).  
When using the DWT multiclassifier system, the overall 
classification accuracies ranged from the high 80’s to the mid 
90’s.  When using the stepwise LDA technique the overall 
classification accuracies ranged from the mid 60s to the mid 90’s.  
.   
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I.  INTRODUCTION  
Hyperspectral sensors have the ability to produce many 

spectral features per pixel and have been widely used in many 
remote sensing target recognition applications.  However, with 
this increase in available features, hyperspectral systems often 
face the “curse of dimensionality”, a problem encountered 
when the amount of labeled training data is not sufficient to 
support the number of potential features.  A variety of 
dimensionality reduction and feature extraction methods have 
been investigated for hyperspectral systems.  One of the more 
recent approaches is a supervised scheme that involves spectral 
band grouping, multiclassifiers, and decision fusion [1-2].   
With this approach, the adjacent spectral bands are intelligently 
grouped in order to form lower dimensional subspaces. Then 
the spectral band groups are sent to a bank of classifiers, one 
classifier for each group.  Next, the classifications made by the 
classifiers are fused using decision fusion to produce one final 
classification, e.g. target or non-target.  The weights used in the 
decision fusion stage of the system typically takes into account 

the reliability of each group/classifier combination to 
accurately classify a pixel.   

II. BACKGROUND 
A major drawback of the spectral band grouping 

approach in hyperspectral automated target recognition (ATR) 
systems is its limited ability to extract large scale, or global, 
features from the hyperspectral signatures.  Typically, the 
band grouping stage of the ATR system uses one of two 
approaches: (1) a sliding window of fixed size, or (2) a bottom 
up approach.  For the latter approach, initially each spectral 
band is considered as a group. Then adjacent groups begin to 
be merged to form larger groups.  Groups are allowed to grow 
across the spectrum as long as two criteria are met: (i) the 
merging of groups increases a pre-defined performance metric 
(e.g. class separation, classification accuracy, etc), and (ii) the 
group size does not grow larger than the training data can 
support.  The second criterion is important, since the bands in 
a particular group are still considered as features, and the 
“curse of dimensionality” needs to be avoided.  Since the size 
of the groups are limited, only small scale, or localized, 
features are produced.  From previous research in wavelet 
analysis of hyperspectral signatures, we know that large scale, 
or global features, can be pertinent to particular target 
recognition problems.  For example, the discrete wavelet 
transform (DWT) has been successfully used for extracting 
both local and global spectral features in several hyperspectral 
target recognition systems [3-8].  Bruce et al. used the DWT 
to successfully extract features from hyperspectral signatures 
[3-4], and interestingly, they found that oftentimes a 
combination of both small scale and large scale features were 
optimum.  Zhang et al. used the DWT and linear discriminant 
analysis for feature reduction and optimization in 
hyperspectral soil texture classification [5].  Li et al. utilized 
the Haar DWT as a preprocessing stage to improve linear 
unmixing of hyperspectral signatures [6], where again a 
combination of both small scale and large scale features were 
optimum. 

In this study, the authors investigate the use of the 
discrete wavelet transform (DWT) as a preprocessing stage for 
a multiclassifier and decision fusion system for hyperspectral 
data.  That is, the spectral band grouping stage will be 



replaced with a DWT stage. As a result, both global and local 
spectral features can be utilized.  After these features are 
extracted, they are then reduced based on the number of 
features the training data can support. Then each set of detail 
wavelet coefficients at each scale is sent to a classifier, and the 
classifications are fused to form a single, final output label for 
the hyperspectral signature.  The authors compare the 
proposed system to existing, hyperspectral analysis methods, 
such as stepwise linear discriminant analysis (LDA). 

III. METHODOLOGIES 

A. Wavelet Decomposition 
 The DWT is a well known feature extraction and 
mathematical analysis method.  The DWT decomposes a 
signal by projecting it onto dilated (or scaled) and translated 
versions of a prototype wavelet function known as the mother 
wavelet [11].  The DWT can be implemented using a dyadic 
filter tree, as shown in Figure 1 [11].  This implementation is 
utilized due to its computational efficiency, and is 
implemented using a two-channel filter bank which are low-
pass and high-pass.  Each level of the filter tree corresponds to 
a dyadic scale (2j) of the wavelet decomposition. At each 
scale, the wavelet approximation coefficients are produced by 
the low-pass filter, and the wavelet detail coefficients are 
produced by the high-pass filter.  In this study, the mother 
wavelet of choice is the Haar wavelet because if its simplicity 
and because it has been shown to be the optimum choice in 
other hyperspectral wavelet analyses [3-4,6].  The maximum 
level of decomposition is dependent upon the number of 
spectral bands (2151 in our study) and the mother wavelet 
(Haar).  As a result, the wavelet decomposition was restricted 
to 10 levels in our experimental analysis. 
 

B. Dimensionality Reduction 
 Each set of wavelet detail coefficients, along with the 
final set of approximation coefficients, is considered a feature 
vector,   similar  to  a  spectral  band  group  as  in [1-2].   The 
feature vector should next be reduced/optimized.  As in the 
spectral   band   grouping   approach,   we   use  LDA  for  this 
dimensionality reduction and feature optimization.  However, 
LDA is a statistical, supervised method that can also face the 
“curse of dimensionality”.  Thus, LDA might not be directly 
applicable to the lower levels of the wavelet decomposition.  
This will be the case if the number of small scale, fine detail 
coefficients is too large (i.e. cannot be supported by the 
amount of training data).  In this study, we use a 3-to-1 rule of 
thumb to determine which levels of the decomposition could 
have LDA directly applied.  That is, if the number of detail 
coefficients is one-third the number of training samples (N/3), 
then we assume that LDA can be accurately applied.  
However, if the number of detail coefficients is too large 
(>N/3), then the detail coefficients are grouped into contiguous 
sets of size N/3, and each set is then reduced/optimized via 
LDA.   

C. Classification and Decision Fusion 
 Each reduced/optimized feature vector (output of 
LDA) is independently classified.  In this study, we use a 
maximum likelihood classifier in each case.  However, it 
should be noted that other classifiers could be utilized, such as 
non-parametric nearest neighbor classifiers, neural networks, 
etc.  The resulting classifications are then fused using a simple 
majority vote scheme, given by  
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Figure. 1 Proposed hyperspectral target recognition system.



where w is the class label from one of the C possible classes  
for the test pixel, and N(i) is the number of times class i was 
detected in the bank of classifiers. The result is a single, final 
classification for the input hyperspectral signature. 

IV. CASE STUDY 
 The proposed ATR system is applied to experimental 
hyperspectral data for an agricultural application, namely the 
early detection of a disease known as soybean rust 
(Phakopsora pachyrhizi) in soybean crops [7].   The ability to 
rapidly detect soybean rust onset is critical to the US 
economy, and agencies such as the U.S. Department of 
Agriculture (USDA) and Department of Homeland Security 
(DHS) are very interested in this particular application. 
Soybean rust, which is caused by Phakopsora pachyrhizi, is a 
windborne pathogen which can be transmitted over large areas 
in a matter of weeks [9].  In 2002/2003, Brazil suffered an 
estimated loss in soybean crop of 3.4 million tons and a $600 
million estimated cost for fungicide sprays.  The USDA 
estimates an economic loss of $640 million to $1.3 billion in 
the first year of a widespread soybean rust invasion in the 
United States [9].    

The hyperspectral data was collected using the 
Analytical Spectral Devices (ASDTM) Fieldspec Pro handheld 
spectroradiometer [10]. The ASD has a spectral range of 350 – 
2500 nm, spectral resolution of 3 nm @ 700 nm and 10 nm @ 
1400/2100 nm, and uses a single 512 element silicon 
photodiode array for sampling 350 - 1000 nm and two 
separate, graded index Indium-Gallium-Arsenide photodiodes 
for the 1000 - 2500 nm range [10].  The signatures in this 
experiment were collected over a two week period in a green 
house outside the city of Encarnacion, Paraguay, in 2005 with 
the humidity at 100% and the temperature kept close to 80 - 
85 F.  

For this study, 678 samples were used for evaluation, 
320 samples of the control soybean and 358 samples of the 
inoculated soybean.  For each class, 160 signatures were used 
to train the system, while the remaining 160 samples of the 
control soybean and 198 samples of the inoculated soybean 
were used for testing the accuracy of the system. 

V. RESULTS AND DISCUSSIONS 
 Figure 2 shows the overall accuracies of the DWT 
multiclassifier and decision fusion approach and the stepwise 
LDA approach over a 4 date period and the results for 
combining all of the dates.  It is clear from Figure 2 that the 
DWT target recognition system outperformed the stepwise 
LDA method in every category.  The global and local features 
provide by the DWT technique seemed to have a stronger 
impact on classification when data was organized by date.  
Note that on date 3 (only 3 days after the plants have been 
inoculated with the disease), the DWT and stepwise LDA 
approaches result in an overall accuracy of approximately 
92% and 68%, respectively.  The proposed DWT approach 
represents a significant improvement in ability to discriminate 
between healthy soybean crops and those inoculated with 

soybean rust, particularly in the critical early stages of the 
disease.  When all dates where combined, both stepwise LDA 
and the DWT technique could not accurately determine 
whether the hyperspectral signature represented a healthy 
soybean crop or one inoculated with the disease. The overall 
accuracy for the separated dates for the DWT technique range 
in the high 80’s to the mid 90’s.  The overall accuracies for the 
separated dates for the stepwise LDA method ranges from the 
high 60’s to the mid 90’s.  Note that the DWT technique 
performed its best on the separate dates than on the combined 
dates.  Also, one can notice that the classification accuracies 
per date are larger for the last two dates.  This result is not 
surprising because one would expect the soybean pathogen to 
have a more significant impact on the spectral reflectance of 
the plant as time progressed.   
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Figure 2 Overall classification accuracies for the proposed DWT approach 
versus stepwise LDA method for two-class problem of soybean with and 

without inoculation of soybean rust pathogen. 
 
 

VI. CONCLUSION 
 Effectively exploiting hyperspectral signatures is a 
challenging task, particularly when only a limited amount of 
training data is available.  Dimensionality reduction and 
feature extraction play a critical role.  In this paper, the authors 
propose a hyperspectral ATR system that utilizes the 
multiresolution analysis (DWT) combined with 
multiclassifiers (bank of maximum likelihood classifiers) and 
decision fusion (simple majority vote).  The DWT allows for 
the exploitation of both global and local spectral features.  The 
multiclassifier and decision fusion approach enables the 
utilization of statistical methods like LDA for feature 
optimization and maximum likelihood for classification when 
only small numbers of training data are available.  The 
proposed ATR system was applied to experimental 
hyperspectral data for an agricultural application, namely 
discriminating between healthy soybean crops and those 
containing the soybean rust pathogen.  When compared to 



traditional methods like stepwise LDA, the proposed DWT 
approach consistently resulted in significantly higher 
accuracies, sometimes increasing the overall accuracy by as 
much as 20%. 
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