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Abstract— Changes in land cover system represent a key variable 
in managing and understanding the environment, as well as 
driving many environmental assessment mechanisms such as 
hydrological models for large river basins water budgeting. 
Remote sensing can provide information on the spatial pattern of 
land cover features, but analysis and classification of such 
imagery primarily suffers from the problem of class mixing 
within pixels. To reflect the actual land cover conditions 
rigorously and well defined, statistical algorithms have to ‘bridge 
the gap’ between legend requirements and the input satellite 
imagery. While studies have been done using Maximum 
Likelihood and Fuzzy classifiers in forestry, urban planning and 
savannah woodlands, appropriate methods to map land cover 
distributions in savanna woodlands associated with rural 
settlements are yet scarce. The distribution of savanna 
woodlands, rural residential areas (especially grass-thatched 
housing) and cultivated/grazing areas within the Shire River 
catchment in Malawi, represent classes which have similar 
spectral signatures (especially during the dry season). They occur 
in similar environments and are often in adjacent or mixed 
stands. Two classification methods i.e. purely using a Maximum 
Likelihood Classification and when improving this classification 
using a contextual Fuzzy Convolution filter were assessed to map 
land cover dynamics of the Shire River catchment using Landsat 
7 ETM+. With respect to classification methodologies and the 
ability to correctly identify land cover features, accuracies 
(before and after applying the filter) were compared and tested 
for the catchment’s hydrological modelling. Spatial 
characteristics of the catchment, digital elevation data, 
precipitation and the Landsat mapped land cover data were 
derived and exported into a Geographic Information Systems 
(GIS) to provide thematic data layers from which to delineate 
hydrologic response units (HRU). Eight detailed land cover 
classes were mapped for the Shire River catchment. The 
hierarchical legend structure determined by the Food and 
Agriculture Organization (FAO) Land Cover Classification 
System (LCCS) was used to label land cover variables. The 
purely Maximum Likelihood statistical classifier accurately 
mapped individual classes in more detail which could not be 
discriminated using Fuzzy Convolution filter. The spatial scale 
for land cover parameterization can play a significant role in how 
specific land surface hydrological processes are simulated. 
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I.  INTRODUCTION  

The Shire River system forms the most important water 
resource for Malawi. Hydro-electric power plants of about 

200 MW generation output, based on a firm flow of 170 m³ s-1, 
have been developed on this river, providing 98% of electricity 
current provision needs in Malawi [1]. An estimated 20-
25 m3 s-1 of water is abstracted for irrigation and Blantyre City 
abstracts 1 m³ s-1 of the water supply for both domestic and 
industrial use. The Shire River has also led to the development 
of the fisheries industry, water-transport and tourism. This 
translates into increased demands for water by different groups, 
with different needs and values. When water supply is limited 
in quantity or quality, or distributed unevenly, it can be both a 
source of cooperation and contestation within its different users 
[2, 3]. 

Over the last three decades, the Shire River catchment has 
undergone considerable changes in its structure and 
composition of land cover [4]. Causes include vegetation 
clearing for farming, building of houses and charcoal 
production. Consequently, processes of land hydrology, such as 
run-off, infiltration, evapotranspiration and interception have 
been modified.  

Land cover mapping and classification for the Shire River 
catchment were carried out previously, based on spectral 
homogeneous clusters [5]. However, appropriate mapping 
procedures were not applied and this project did not produce 
satisfactory results applicable, for example, in hydrological 
modelling. Any further modelling of hydrological impacts of 
changes in land cover would thus require a revision of these 
earlier classification attempts. Therefore, it was imperative to 
accurately map land cover classes and changes in the Shire 
River catchment to provide input data needed.  

Various ecological regions present major classification 
challenges because of diversity within and between the 
landscapes [6]. Many geographical applications describe the 
spatial extent of natural geographic objects by well-defined 
regions that have a sharp boundary [7]. Conventional image 
classification algorithms, such as Maximum Likelihood 
classification, assume that the study area is composed of such 
unique, internally homogeneous classes [8]. However, such an 
assumption of determinate and crisp objects is inadequate for 
mapping the spatial phenomena of savanna woodlands. Most 
landscape types within these savannas have gradual 
boundaries, such as transitions from water body to forested 
wetland to upland forest [9]. Typically, such characteristics of 
vegetated areas are distributed gradually and continuously 
rather than abruptly. Savanna woodlands comprise mainly 



shrubs with a cover of between 5 and 40 percent. Where 
savannas are disappearing, landscapes are dominated by 
medium to tall grasslands with forest relics and isolated stands 
of shrub-lands. In close association with the savanna 
woodlands, includes village settlements (both clustered and 
scattered) with grass thatched roofing, mud walls and 
occasionally iron sheet roofing. The ambiguity of natural land 
cover composition in the transitional zones leads to uncertainty 
and thus to classification errors (Fig. 1). In such circumstances, 
different classification algorithms may produce different 
results, even where the same training sets are used [10]. 
Specifically, classification of mixed pixels can present 
difficulties as it is not sensible to assign a mixed pixel to one or 
other single class.  
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Figure 1. Examples of land cover in Malawi: (a, b) rural village 
settlements, showing similarity of spectral properties of 
dwellings and grassland; (c) savanna woodlands (d) recently 
burnt savanna 
 

A number of approaches have been developed and tested 
for solving pixel unmixing to reduce classification errors. For 
example, Zhang [11], applied fuzzy approaches and statistical 
classification to ecological habitats using field data from 
mixed-species forest stands. Their study showed the ability of 
fuzzy classifiers to improve classification accuracy, and 
flexibility in classifying ecological habitats that have a mixture 
of over-story and under-story species. 

Fuzzy classification attempts to handle the mixed-pixel 
problem by employing the fuzzy set concept, in which a pixel 
may have membership in more than one category [7, 12]. This 
approach is similar to application of Maximum Likelihood 
classification, the difference being that fuzzy mean vectors and 
covariance matrices are developed from statistically weighted 
training data [13]. As such, both the spatial continuity and the 
fuzziness of spatial data can be involved in the classification 
process. When two or more classes occupy a single pixel the 
mixed pixel would be appropriate in conceiving the different 
landscapes as a set of fuzzy classes. Therefore, algorithms to 
provide an improved spatial representation of mixed pixels for 

deriving land cover data are imperative to increase 
classification accuracy. 

While studies have been done using Maximum Likelihood 
and Fuzzy classifiers in forestry, urban planning and savanna 
woodlands [9, 11], appropriate methods to map land cover 
distribution in savanna woodlands associated with rural 
settlements are yet to be examined. The purposes of this paper 
are: (i) to identify non-linear land cover classes incorporating 
rural settlement areas; and (ii) to classify and map land cover 
within the Shire River catchment of Malawi. Two classification 
methods were utilized: pure Maximum Likelihood 
Classification, and contextual Fuzzy Convolution filters. 
Accuracies were compared, using field data collected as part of 
this project. 

II.  METHODOLOGY 

A. Data  

A Landsat 7 Enhanced Thematic Mapper Plus (ETM+) 
image, level 1G, p167 r72 imaged on 26th July, 2002, was 
obtained from Global Land Cover Network, FAO/Africover 
project1. Supplementary digital data sets were obtained from 
the Department of Surveys in Malawi to complement the 
satellite data. From these, a number of digital GIS layers were 
created including: towns, road networks, administrative 
borders, soil types and hydrography (river flow networks). 
Slope, aspect and altitude were delineated from digital 
elevation data downloaded from Consultative Group 
International Agricultural Research (CGIAR).11 

1) Image pre-processing 
Land cover mapping and subsequent quantitative change 

detection requires geometric registration between TM and 
ETM scenes, and radiometric rectification to adjust for 
differences in atmospheric conditions, viewing geometry and 
sensor noise and response [7, 12]. The Landsat image had been 
geometrically corrected by the Global Land Cover Facility 
(GLCF). The image was registered to the Malawi UTM 
Zone36/Arc1950 Datum projection system to match with in 
situ vector data [5]. The image was further pre-processed by 
converting the digital numbers (DN) to radiance units, and then 
reflectances (ρ) were calculated for each band as 
described in Vermote [14].Conversion to reflectance was 
aimed to minimize variation due to varying solar zenith angles 
and incident solar radiation. 

B. Methodology 

1) Maximum Likelihood Classification. 
Pixel based classification was undertaken using the 

Maximum Likelihood algorithm [7, 12]. This involved the 
selection of training areas representative of the eight land cover 
classes. A number of training areas were selected to represent 
each class. The signature (or spectral mean) of the training area 
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was then used to determine to which class the pixels were 
assigned. 

2) Fuzzy Convolution filter Classification 
The fuzzy convolution filter classification process can be 

split into two steps, classification and filtering. The first step is 
similar to the Maximum Likelihood method; the second step 
creates a single classification layer by calculating the total 
weighted inverse distance of all the classes in a window of 
pixels and assigning the center pixel the class with the largest 
total inverse distance summed over the entire set of fuzzy 
classification layers [13]. The filtering option, based on the 
distance file, allows for each pixel in the window to be 
weighted, based on its geometric distance from the center pixel. 
The neighborhood weighting factor is influenced by the 
heterogeneity of the pixels. Classes with a very small distance 
values will remain unchanged while classes with higher 
distance values may change to a neighboring value if there are 
sufficient neighboring pixels with class values and small 
corresponding distance values. A visual inspection of the 
objects resulting from variations in the weightings was used to 
determine the overall values for the parameter weighting at 
each scale level. In this study, neighborhood weighting factors 
were developed using spectral signatures, shape, location and 
contextual relationships. The weightings were then used as a 
basis for the fuzzy classification of the data with the most 
probable/likely class being assigned to each object. 

The Food and Agricultural Organization (FAO) legend 
structure: Land Cover Classification System (LCCS) was used 
[15]. This legend structure aims to achieve land cover 
harmonization within Africa and on a global scale through a 
self-consistent, scalable set of criteria and labels. 

C. Accuracy assessment and field data collectiont 

Accuracy assessments of both classifications were 
undertaken using producer and user accuracies for each class 
along with the overall accuracies [16]. The accuracies were 
evaluated with error matrix using reference ground-truth data 
along the columns and classified image data along rows. The 
producer accuracy (the probability for a reference sample to be 
correctly classified i.e. errors of omission), the user accuracy 
(the probability that a sample from the classified image actually 
represents that category on the ground i.e. errors of 
commission), and the overall classification accuracy (ratio of 
number of correct classifications to total number of samples) 
were calculated [16, 17]. The reference data were collected 
from 83 points within the study area during field work. Choice 
of sampling areas was biased by proximity to passable roads. 
These points were geo-referenced by GPS. Notes of vegetation 
cover and photographs of the sites were collected. 

III.  RESULTS 

A visual comparison of the resultant land cover images 
shows differences between the classifications (Fig. 1). While 
both methods produce aggregations of pixels based on land 
cover classes, the fuzzy convolution filter classification yields 
multi-pixel features whereas the pixel-based classification 
contains many small groups of pixels or individual pixels. This 
produces classes with mixed clusters of pixels as displayed by 
the heterogenic nature of the image. A complexity of the 
maximum likelihood classification occurred due to the 
similarity in reflectance characteristics of savanna shrubs, 
cultivated/grazing areas and built up areas which resulted in 
either greater or lesser representation of their spatial extents.
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Figure 1: Results of: (a) Maximum Likelihood; and (b) Fuzzy Convolution classifications



Maximum 
Likelihood 

Fuzzy Convolution  
Class 

Area (ha) % Area (ha) % 

Ratio of 
% values 
for each 
method 

Fresh water 37 178 8.1 37 105 8.1 1.00 

Built-up areas 14 326 3.1 7 264 1.6 1.94 
Cultivated/ 

grazing 
117 071 25.7 147 462 32.3 

0.81 

Marshes 29 490 6.5 21 106 4.6 1.4 

Grasslands 63 664 14.0 54 052 11.8 1.19 
Savanna 
shrubs 

112 356 24.6 119 056 26.1 
0.94 

Woody Open 38 446 8.4 30 418 6.7 1.25 

Woody closed 43 967 9.6 40 035 8.8 1.09 

Total 456 498 100 456 498 100  

Table 1: Land cover classes and their spatial extents 
 

Based on the difference ratio between Maximum 
Likelihood and Fuzzy Convolution filter, there is no difference 
in the spatial extent of fresh water. Fuzzy Convolution appears 
to classify more details in cultivated (ratio = 0.81) and savanna 
shrubs area (ratio = 0.94) though the differences are not 
significant. Significant differences are noted in built-up areas, 
marshes, grasslands, woody open and woody closed areas in 
which Maximum Likelihood classifies more details compared 
to Fuzzy Convolution (Table 1). For example, the built-up area 
and grassland classes appear noticeably less in the Fuzzy 
Convolution filter classification. 

From the results of the confusion matrices, the overall 
accuracy of the pixel-based classification was better than for 
Fuzzy Convolution classification, 87% versus 77% 
respectively (Table 2). The producer and user accuracies were 
greater for the majority of the classes in the Maximum 
Likelihood classification. The land cover classes that were 
more accurately classified using the pixel-based method were 
grasslands, woody closed, marshes and savanna shrubs. The 
classes that had poor accuracy in both classifications were built 
up areas and cultivated/grazing areas.  

This is possibly due to built up areas (especially grass-
thatched) and cultivated areas/grazing occurring in similar 
environments and are often in adjacent or mixed stands. During 
dry periods when there is little chlorophyll in the vegetation, 
grazing causes exposure of soil between remaining vegetation 
resulting into similar spectral values making it difficult to 
distinguish the two classes.  

 Maximum Likelihood Fuzzy Convolution  

Class Producers 
(%) Users (%) 

Producers 
(%) 

Users 
(%) 

Fresh water 100 100 91 100 

Built up areas 83 77 42 50 

Cultivated 
/grazing 87 78 78 58 

Marshes 77 92 80 83 

Grasslands 97 100 77 96 

Savanna shrubs 91 91 60 95 

Woody open 80 80 95 82 

Woody closed 92 96 92 100 

 Overall accuracy =87% Overall accuracy =77% 

Table 2: Error matrices for land cover classes 
 

IV.  DISCUSSION 

The difference between the two classifications is visually 
obvious: Maximum Likelihood is fine grained and fuzzy while 
Fuzzy classifier yields less speckled output pushing pixels into 
consolidated larger objects. Maximum Likelihood retains fine 
grained differentiation while Fuzzy emphasizes the macro-
structure. Fuzzy classifiers do misclassify pixels, particularly in 
land covers that are spectrally heterogeneous, such as rural 
built up areas and savanna shrubs with producers’ accuracy of 
60%, 42% respectively and cultivated/grazing areas yielded 
users’ accuracy of 58%. While it is evident that pixel-based 
classification is still quite successful in classifying land cover 
of a homogenous nature, both classification methods appear to 
be able to differentiate more accurately the woody open and 
woody closed classes.  

The pixel-based classification method used in this paper 
provided results with 87% accuracy higher than 77% of the 
fuzzy convolution filter. This suggests that maximum 
likelihood analysis has great potential for extracting land cover 
information from satellite imagery captured in tropical savanna 
woodlands associated with rural settlements such as Malawi. 
This will be the case particularly with the increasing 
application of higher resolution imagery and the greater 
information content it holds. 

V. CONCLUSION 

While recent research results claim that the fuzzy 
convolution filter has greater potential for classifying higher 
resolution imagery than pixel-based methods [18, 19, 20], this 
study has revealed that Maximum Likelihood method yields 
greater accuracy based on confusion matrix evaluation, in a 
case study mapping rural savanna woodlands. It can further be 
concluded that the majority of pixels showed real complexity 
in the landscape rather than noise. Maximum likelihood 
classifier proved to be useful in discriminating heterogeneous 
environments, which is well suited for applications such as 
hydrological modelling. Although Maximum Likelihood 



classification assumes a Gaussian distribution, this algorithm 
can be easily implemented to produce land cover maps of 
higher accuracy in a complex environment from image data of 
resolution, such as the Landsat ETM images. However, to 
improve the accuracies of the Fuzzy Convolution classification, 
contextual information to be applied during neighborhood 
weighting should be further developed. The use of multi-sensor 
data and ancillary data, such as derivative data sets and 
extensive field data could be investigated.  
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