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Abstract— Changes in land cover system represent a key valile
in managing and understanding the environment, as all as
driving many environmental assessment mechanisms &u as
hydrological models for large river basins water budgeting.
Remote sensing can provide information on the spati pattern of
land cover features, but analysis and classificatio of such
imagery primarily suffers from the problem of class mixing
within pixels. To reflect the actual land cover coditions
rigorously and well defined, statistical algorithmshave to ‘bridge
the gap’ between legend requirements and the inpusatellite
imagery. While studies have been done using Maximum
Likelihood and Fuzzy classifiers in forestry, urbanplanning and
savannah woodlands, appropriate methods to map land@over
distributions in savanna woodlands associated withrural
settlements are yet scarce. The distribution of sawmna
woodlands, rural residential areas (especially grasthatched
housing) and cultivated/grazing areas within the Sine River
catchment in Malawi, represent classes which haveinglar
spectral signatures (especially during the dry seags). They occur
in similar environments and are often in adjacent o mixed
stands. Two classification methods i.e. purely usjna Maximum
Likelihood Classification and when improving this dassification
using a contextual Fuzzy Convolution filter were asessed to map
land cover dynamics of the Shire River catchment usg Landsat
7 ETM+. With respect to classification methodologis and the
ability to correctly identify land cover features, accuracies
(before and after applying the filter) were comparel and tested
for the catchment's hydrological modelling. Spatial
characteristics of the catchment, digital elevation data,
precipitation and the Landsat mapped land cover da were
derived and exported into a Geographic Information Systems
(GIS) to provide thematic data layers from which todelineate
hydrologic response units (HRU). Eight detailed lad cover
classes were mapped for the Shire River catchmentThe
hierarchical legend structure determined by the Food and
Agriculture Organization (FAO) Land Cover Classification
System (LCCS) was used to label land cover varialde The
purely Maximum Likelihood statistical classifier accurately
mapped individual classes in more detail which codl not be
discriminated using Fuzzy Convolution filter. The patial scale
for land cover parameterization can play a signifiant role in how
specific land surface hydrological processes aresilated.
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200 MW generation output, based on a firm flow 80 In3 g
have been developed on this river, providing 98%lectricity
current provision needs in Malawi [1]. An estimat@0-
25 nt's? of water is abstracted for irrigation and Blantg@igy
abstracts 1 m3'sof the water supply for both domestic and
industrial use. The Shire River has also led todieelopment
of the fisheries industry, water-transport and ismar This
translates into increased demands for water bgrdifit groups,
with different needs and values. When water suplimited
in quantity or quality, or distributed unevenlycén be both a
source of cooperation and contestation withinifferént users
[2, 3]

Over the last three decades, the Shire River cahims
undergone considerable changes in its structure and
composition of land cover [4]. Causes include \aiet
clearing for farming, building of houses and chafco
production. Consequently, processes of land hydyolsuch as
run-off, infiltration, evapotranspiration and inteption have
been modified.

Land cover mapping and classification for the Sieer
catchment were carried out previously, based orctise
homogeneous clusters [5]. However, appropriate mapp
procedures were not applied and this project didpnoduce
satisfactory results applicable, for example, irdrbjogical
modelling. Any further modelling of hydrological pacts of
changes in land cover would thus require a revisibthese
earlier classification attempts. Therefore, it waperative to
accurately map land cover classes and changeseirStire
River catchment to provide input data needed.

Various ecological regions present major clasgifice
challenges because of diversity within and betwdla
landscapes [6]. Many geographical applications ritesche
spatial extent of natural geographic objects byl-defined
regions that have a sharp boundary [7]. Converitionage
classification algorithms, such as Maximum Likebdo
classification, assume that the study area is cembof such
unique, internally homogeneous classes [8]. Howestgrh an
assumption of determinate and crisp objects isegadte for
mapping the spatial phenomena of savanna woodlanost
landscape types within these savannas have gradual
boundaries, such as transitions from water bodjotested
wetland to upland forest [9]. Typically, such claesistics of
vegetated areas are distributed gradually and roomisly

The Shire River system forms the most importantewat ather than abruptly. Savanna woodlands comprisinlyna

resource for Malawi. Hydro-electric power plants aifout



shrubs with a cover of between 5 and 40 percenter&/h
savannas are disappearing, landscapes are domitgted
medium to tall grasslands with forest relics arulated stands
of shrub-lands. In close association with the sagan
woodlands, includes village settlements (both ehest and
scattered) with grass thatched roofing, mud walted a
occasionally iron sheet roofing. The ambiguity afural land
cover composition in the transitional zones leadsricertainty
and thus to classification errors (Fig. 1). In sathumstances,
different classification algorithms may produce fatiént
results, even where the same training sets are [i<¥d
Specifically, classification of mixed pixels can epent
difficulties as it is not sensible to assign a rdixéxel to one or
other single class.

@)

(b)

Figure 1. Examples of land cover in Malawi: (arixal village
settlements, showing similarity of spectral progsrt of
dwellings and grassland; (c) savanna woodlandsgcintly
burnt savanna

A number of approaches have been developed arettes
for solving pixel unmixing to reduce classificatierrors. For
example, Zhang [11], applied fuzzy approaches aaiisscal
classification to ecological habitats using fieldtal from
mixed-species forest stands. Their study showedhitilgy of
fuzzy classifiers to improve classification accyraand
flexibility in classifying ecological habitats thhave a mixture
of over-story and under-story species.

Fuzzy classification attempts to handle the mixeeip
problem by employing the fuzzy set concept, in Wwhecpixel
may have membership in more than one categoryZ]7,This
approach is similar to application of Maximum Likelod
classification, the difference being that fuzzy meactors and
covariance matrices are developed from statisficalighted
training data [13]. As such, both the spatial gty and the
fuzziness of spatial data can be involved in tresgification
process. When two or more classes occupy a singgt the
mixed pixel would be appropriate in conceiving thifferent
landscapes as a set of fuzzy classes. Therefgarithims to
provide an improved spatial representation of mipieels for
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deriving land cover data are increase

classification accuracy.

imperative to

While studies have been done using Maximum Likelcho
and Fuzzy classifiers in forestry, urban planning aavanna
woodlands [9, 11], appropriate methods to map leader
distribution in savanna woodlands associated witinalr
settlements are yet to be examined. The purposessobaper
are: (i) to identify non-linear land cover classesorporating
rural settlement areas; and (i) to classify ang iead cover
within the Shire River catchment of Malawi. Twosd#ication
methods were utilized: pure Maximum Likelihood
Classification, and contextual Fuzzy Convolutioritefs.
Accuracies were compared, using field data colteetepart of
this project.

Il.  METHODOLOGY

A. Data

A Landsat 7 Enhanced Thematic Mapper Plus (ETM+)
image, level 1G, pl67 r72 imaged on‘“Zﬂth, 2002, was
obtained from Global Land Cover Network, FAO/Afres
project. Supplementary digital data sets were obtaineth fro
the Department of Surveys in Malawi to complemem t
satellite data. From these, a number of digital @i®rs were
created including: towns, road networks, administea
borders, soil types and hydrography (river flow wuaks).
Slope, aspect and altitude were delineated fromitatlig
elevation data downloaded from Consultative Group
International Agricultural Research (CGIAR).

1) Image pre-processing

Land cover mapping and subsequent quantitative gghan
detection requires geometric registration betwednh and
ETM scenes, and radiometric rectification to adjdst
differences in atmospheric conditions, viewing getrssnand
sensor noise and response [7, 12]. The Landsatiimag) been
geometrically corrected by the Global Land Covecilig
(GLCF). The image wagegistered to the Malawi UTM
Zone36/Arc1950 Datum projection system to matchhwit
situ vector data [5]. The image was further pre-prasedsy
converting the digital numbers (DN) to radiancesjrand then
reflectances p) were calculated for each band as
described in Vermote [14}onversion to reflectance was
aimed to minimize variation due to varying solanie angles
and incident solar radiation.

B. Methodology

1) Maximum Likelihood Classification.

Pixel based classification was undertaken using the
Maximum Likelihood algorithm [7, 12]. This involvethe
selection of training areas representative of tgletéand cover
classes. A number of training areas were selecedpresent
each class. The signature (or spectral mean) dfaheng area
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was then used to determine to which class the ingre
assigned.

2) Fuzzy Convolution filter Classification

The fuzzy convolution filter classification procesan be
split into two steps, classification and filterinkhe first step is
similar to the Maximum Likelihood method; the sedastep
creates a single classification layer by calcutptthe total
weighted inverse distance of all the classes iniralaw of
pixels and assigning the center pixel the clash thie largest
total inverse distance summed over the entire Sduazy
classification layers [13]. The filtering optionaded on the
distance file, allows for each pixel in the windae be
weighted, based on its geometric distance froncéiméer pixel.
The neighborhood weighting factor is influenced the
heterogeneity of the pixels. Classes with a verglkdistance
values will remain unchanged while classes withhéig
distance values may change to a neighboring vélineie are
sufficient neighboring pixels with class values asdhall
corresponding distance values. A visual inspectifénthe
objects resulting from variations in the weightingss used to
determine the overall values for the parameter hiigig at
each scale level. In this study, neighborhood wéighfactors
were developed using spectral signatures, shapatida and
contextual relationships. The weightings were thead as a
basis for the fuzzy classification of the data witie most
probable/likely class being assigned to each abject

C. Accuracy assessment and field data coll ectiont

Accuracy assessments of
undertaken using producer and user accuraciesafir elass
along with the overall accuracies [16]. The accasaavere
evaluated with error matrix using reference grotmuth data
along the columns and classified image data alomg.r The
producer accuracy (the probability for a referesample to be
correctly classified i.e. errors of omission), tlmer accuracy
(the probability that a sample from the classifredge actually
represents that category on the ground i.e. ermfrs
commission), and the overall classification accyr@atio of
number of correct classifications to total numbesamples)
were calculated [16, 17]. The reference data wetkeated
from 83 points within the study area during fieldrnu Choice
of sampling areas was biased by proximity to pdesaiads.
These points were geo-referenced by GPS. Notesgaftation
cover and photographs of the sites were collected.

Ill.  RESULTS

A visual comparison of the resultant land cover gem
shows differences between the classifications (BigWhile
both methods produce aggregations of pixels basethrd
cover classes, the fuzzy convolution filter clasatfon yields
multi-pixel features whereas the pixel-based cliassion
contains many small groups of pixels or individpadels. This
produces classes with mixed clusters of pixelsisglayed by

The Food and Agricultural Organization (FAO) legendthe heterogenic nature of the image. A complexitythe

structure: Land Cover Classification System (LC@@&¥ used
[15]. This legend structure aims to achieve landreco
harmonization within Africa and on a global scahkeotigh a
self-consistent, scalable set of criteria and &bel

maximum likelihood classification occurred due tbet
similarity in reflectance characteristics of sawanshrubs,
cultivated/grazing areas and built up areas wheagulted in
either greater or lesser representation of theaiti@pextents.

10 20
-

30 40 50 km

Land Cover Categories
B Fresh Water
B Built Up Areas
| Cultvated/Grazing
Marshes

Grasslands
Savannah Shrubs
Woady Closed
Woody Open

HENN

Figure 1: Results of: (a) Maximum Likelihood; and ) Fuzzy Convolution classifications

both classifications were



Maximum E c uti Ratio of
Class Likelihood uzzy Convolution o4 yajyes
for each
Area (ha) % Area (ha) % method
Fresh water 37178 8.1 37 105 8.1 1.00
Built-up areas 14 326 3.1 7 264 1.6 1.94
Culvated/ 117479 257 147462 323
grazing 0.81
Marshes 29 490 6.5 21106 4. 1.4
Grasslands 63 664 14.0 54 052 11 1.19
Savanna
shrubs 112 356 24.6 119 056 26.1 0.94
Woody Open 38 446 8.4 30418 6. 1.25
Woody closed 43 967 9.6 40 035 8. 1.09
Total 456 498 100 456 498 100

Table 1: Land cover classes and their spatial exten

Based on the difference
Likelihood and Fuzzy Convolution filter, there is difference

in the spatial extent of fresh water. Fuzzy Contioluappears
to classify more details in cultivated (ratio =I).&nd savanna

shrubs area (ratio =0.94) though the differences m@ot
significant. Significant differences are noted inltsup areas,
marshes, grasslands, woody open and woody closzd am
which Maximum Likelihood classifies more detailsrgmared
to Fuzzy Convolution (Table 1). For example, thédtiup area
and grassland classes appear noticeably less inFtlaey
Convolution filter classification.

From the results of the confusion matrices, therabve

accuracy of the pixel-based classification wasebetian for
Fuzzy Convolution classification, 87% versus
respectively (Table 2). The producer and user acees were
greater for the majority of the classes in the Nuaxn
Likelihood classification. The land cover classésttwere
more accurately classified using the pixel-basethatkwere
grasslands, woody closed, marshes and savannasshrub
classes that had poor accuracy in both classificativere built
up areas and cultivated/grazing areas.

This is possibly due to built up areas (especigligiss-
thatched) and cultivated areas/grazing occurringsimilar
environments and are often in adjacent or mixeadstaDuring
dry periods when there is little chlorophyll in thegetation,
grazing causes exposure of soil between remairgggtation
resulting into similar spectral values making ifffidult to
distinguish the two classes.

7%

Maximum Likelihood Fuzzy Convolution

Class Producers Users (%) Producers Users
() %) *9)

Fresh water 100 100 91 100
Built up areas 83 77 42 50
Cultivated
e 87 78 78 58
Marshes 77 92 80 83
Grasslands 97 100 7 96
Savanna shrubs 91 91 60 95
Woody open 80 80 95 82
Woody closed 92 96 92 100

Overall accuracy =87% Overall accuracy =77%

Table 2: Error matrices for land cover classes

ratio between Maximum

IV. DISCUSSION

The difference between the two classificationsissially
obvious: Maximum Likelihood is fine grained and Zyavhile
Fuzzy classifier yields less speckled output puglpirels into
consolidated larger objects. Maximum Likelihoodanes fine
grained differentiation while Fuzzy emphasizes thacro-
structure. Fuzzy classifiers do misclassify pixpksticularly in
land covers that are spectrally heterogeneous, asctural
built up areas and savanna shrubs with producecsiracy of
60%, 42% respectively and cultivated/grazing argatded
users’ accuracy of 58%. While it is evident thatepbased
classification is still quite successful in clagsif land cover
of a homogenous nature, both classification metlapgear to
be able to differentiate more accurately the wooggn and
woody closed classes.

The pixel-based classification method used in pgaper
provided results with 87% accuracy higher than 7af%he
fuzzy convolution filter. This suggests that maximu
likelihood analysis has great potential for extragiand cover
information from satellite imagery captured in fg@h savanna
woodlands associated with rural settlements suchMadawi.
This will be the case particularly with the incrieas
application of higher resolution imagery and theeager
information content it holds.

V. CONCLUSION

While recent research results claim that the fuzzy
convolution filter has greater potential for cl&gsig higher
resolution imagery than pixel-based methods [18,209, this
study has revealed that Maximum Likelihood methaldg
greater accuracy based on confusion matrix evainatn a
case study mapping rural savanna woodlands. Ifurémer be
concluded that the majority of pixels showed reahplexity
in the landscape rather than noise. Maximum likelch
classifier proved to be useful in discriminatingdregeneous
environments, which is well suited for applicatiosisch as
hydrological modelling. Although Maximum Likelihood



classification assumes a Gaussian distributiors, algorithm

can be easily implemented to produce land coversnafp
higher accuracy in a complex environment from imdge of
resolution, such as the Landsat ETM images. Howeteer
improve the accuracies of the Fuzzy Convolutiossifecation,

contextual information to be applied during neigtiomd

weighting should be further developed. The useufirsensor
data and ancillary data, such as derivative data aad
extensive field data could be investigated.
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